
IEEE TRANSACTIONS ON ROBOTICS, VOL. 28, NO. 1, FEBRUARY 2012 223

On Optimizing Autonomous Pipeline Inspection
Xin Li, Member, IEEE, Wuyi Yu, Student Member, IEEE, Xiao Lin, and S. S. Iyengar, Fellow, IEEE

Abstract—This paper studies the optimal inspection of au-
tonomous robots in a complex pipeline system. We solve a 3-D
region-guarding problem to suggest the necessary inspection spots.
The proposed hierarchical integer linear programming optimiza-
tion algorithm seeks the fewest spots necessary to cover the entire
given 3-D region. Unlike most existing pipeline inspection systems
that focus on designing mobility and control of the explore robots,
this paper focuses on global planning of the thorough and auto-
matic inspection of a complex environment. We demonstrate the
efficacy of the computation framework using a simulated environ-
ment, where scanned pipelines and existing leaks, clogs, and defor-
mation can be thoroughly detected by an autonomous prototype
robot.

Index Terms—Autonomous pipeline inspection, 3-D region
guarding.

I. INTRODUCTION

ACTIVE monitoring and frequent inspections are critical to
maintaining pipeline health. As the most economical way

to transport gas, oil, bio fuels, water resource, sewer, and so
forth, pipelines have become an indispensable part of our daily
lives. However, pipelines always suffer from aging and dam-
ages, which can cause great waste of resource, environmental
pollution, and many other accidence. For example, the leak of
petroleum pipeline causes ocean pollution and ecocatastrophe.
Regular inspections and maintenance of pipelines are essential
to keep them functional.

Unfortunately, the difficulty and the cost for human inspec-
tion can be extremely high, especially with the appearance of
increasingly complicated pipelines nowadays (see, for example,
Fig. 1). There are several reasons.

1) Pipeline systems are often buried/hided underground or
into walls. Hiding pipelines’ presence from the surround-

Manuscript received November 14, 2010; revised May 5, 2011; accepted
September 16, 2011. Date of publication November 1, 2011; date of current
version February 9, 2012. This paper was recommended for publication by
Associate Editor T. Murphey and Editor J.-P. Laumond upon evaluation of the
reviewers’ comments. This work was supported in part by the National Natural
Science Foundation of China under Grant 61170323, the U.S. National Sci-
ence Foundation under Grant CNS-1158701, the Louisiana (LA) Post Katrina
funds, the LA Board of Regents RCS LEQSF(2009-12)-RD-A-06, and PFund:
NSF(2011)-PFund-236.

X. Li is with the Department of Electrical and Computer Engineering, and
Center for Computation and Technology, Louisiana State University, Baton
Rouge, LA 70803 USA (e-mail: xinli@cct.lsu.edu).

W. Yu and X. Lin are with the Department of Automation, Xiamen Uni-
versity, Xiamen 361000, China (e-mail: yuwuyi@gmail.com; lxsherryxmu@
gmail.com).

S. S. Iyengar is with the School of Computing and Information Sciences,
Florida International University, Miami, FL 33199 USA (e-mail: iyengar@
cis.fiu.edu).

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TRO.2011.2169619

Fig. 1. Complex pipeline system. Image from [1].

ing environment is necessary for better protection of
pipelines, as well as the elegance of the architecture.

2) The structure of pipelines is usually designed long, thin,
and complex, in order to conduct long-distance transporta-
tion or circumvent-complicated terrain or limited space of
the architecture structure.

3) The environment inside pipelines can be dirty and haz-
ardous: Sewerage water or hazardous gas can be over-
flowing.

These factors make direct artificial inspection oftentimes pro-
hibitive, and, therefore, significantly increase the costs for the
maintenance of pipelines. For example, to inspect the pipelines,
people can dig holes in different pipeline sections for the inspec-
tion; high professional competence could be necessary espe-
cially when the environment condition is severe. Indirect meth-
ods include placing sensors outside the pipeline and monitoring
parameters such as pressure, temperature, etc. However, the
sensibility is easily affected by environment and the material
transmitting in the pipeline. Pipeline clogs are sometimes di-
rectly penetrated with long sticks or wires, but it can be very
difficult if pipes are curved or circumvented; another common
approach is to blow out blockages using air pressure, which
fails, however, if pipes have multiple outlets or cracks. In any
case, to apply repair, the suspected area for clogging or leaking
need to be located. This step usually takes the longest time and
largest cost.

A. Pipeline Inspection by Autonomous Robots

With the development of autonomous robots and imaginary-
sensing technologies, pipeline robots that are equipped with
cameras and sensors become ideal candidates to avoid tedious
artificial inspection for automatic pipeline inspection and repair.

Current robotic inspection systems (see Section II) usually
have a robot that is equipped with a camera and sensors; the
robot moves around and transmits the captured images back
to a remote monitor for the operator’s inspection. The robot’s

1552-3098/$26.00 © 2011 IEEE

224 IEEE TRANSACTIONS ON ROBOTICS, VOL. 28, NO. 1, FEBRUARY 2012

movement and the camera direction need to be manually con-
trolled by a skillful inspector. Such an interactive monitoring
system provides easier and safer inspection. However, it can
still be labor intensive (costly) and time consuming. In addi-
tion, complex pipeline environments could limit the extensive
use of these remotely controlled pipeline robots. The mobility
of remotely controlled robots could not meet the requirement
for the inspection in complex pipeline environments, such as
the urban gas pipeline, chemical pipelines, etc. The wired con-
nections also limit the operation range of robots. Furthermore,
the thoroughness of the examination may not be guaranteed and
heavily relies on expertise of the operator.

An autonomous robot that can routinely inspect the environ-
ment and report cracks, clogs, or deformation will, therefore,
be highly desirable. If such an inspection system can be de-
veloped reliably and conducted routinely, it will greatly save
artificial costs and prevent the abnormal situations in important
pipelines. To develop an efficient inspection plan for robots,
according to different environments, to ensure inspection relia-
bility (thoroughness) is related to several challenging geometric
problems.

B. Optimal Autonomous Inspection by Region Guarding

Naturally, one wants to ask the following fundamental open
problem for autonomous inspection: How do we conduct the
most efficient yet thorough inspection? More specifically, given
an environment to inspect, how many inspection spots are nec-
essary to visually cover the entire region? The solution directly
dictates the correctness and efficiency of an autonomous inspec-
tion system and, therefore, is critical.

Visually covering a given 3-D region is an interesting geo-
metric problem called gallery guarding, defined (see Section III
for details) as follows: Given a region whose boundary is a sur-
face, find the smallest set of points inside the region from which
all the boundary points (i.e., the wall) are visible. This problem,
having high complexity, has been actively studied in 2-D. On
general 2-D polygonal regions, this problem has been proved
to be NP-hard. To the best of our knowledge, on 3-D regions
approximated by polyhedra, which have much higher complex-
ity, this problem is little explored and no efficient algorithm has
been reported.

In this paper, we design a hierarchical integer linear program-
ming (HILP) algorithm to find an approximate optimal solution
for the guarding of a given 3-D region. Compared with the
greedy and the optimal algorithms, HILP has a good approxi-
mation to the optimal solution (for instance, to guard a region
in Fig. 3(d), an optimal guarding needs 13 guards, the greedy
approach needs 18 points, while our HILP algorithm guards it
with 14 points) but is several orders of magnitude less than the
direct optimization on time complexity.

Effective region guarding can greatly benefit the automatic
pipeline inspection. Compared with existing manual inspection
systems, the biggest advantage of the new inspection system
built upon optimal guarding is its thorough (therefore, making
the system robust) inspection using fewest (therefore, making
the system efficient and inexpensive) necessary checking spots.

Fig. 2. Autonomous inspection based on region guarding.

The proposed inspection framework is illustrated in Fig. 2, and
the pipeline has two steps.

1) Preprocessing Stage: Once pipeline is newly installed or
when it is working well, we compute its optimal guarding,
e.g., a small set of points {gi}. By checking on these
spots, the entire pipeline can be visually covered. Then,
a pipeline robot only goes to these points, scans the pipe,
and builds up sequential height maps as templates. These
height maps characterize the original pipeline geometry.

2) Online Stage: The robot will go into the pipeline to con-
duct inspection routinely. Every time, it only needs to
move to these spots {gi}, scan the depth information of
the surrounding environment, and compare these height
maps with the corresponding templates. Abnormal geom-
etry changes such as cracks, clogs, and deformation can
be detected and located immediately.

The main contributions of this work lie in both efficiently
finding good approximate solutions of the NP-hard 3-D guarding
problem and its application on robotic inspection.

1) Optimality: We develop an efficient algorithm to find ap-
proximate solution to 3-D region guarding. The solution
indicates a smallest set of spots from which thorough in-
spection can be most timely and costly efficient.

2) Autonomy: We design an automatic pipeline inspection
system for autonomous robots. Unlike other existing sys-
tems whose inspection quality heavily relies on manual
controls, in our framework, robots can inspect on these
fewest guarding points autonomously yet thoroughly.

3) Generality and Robustness: The algorithm efficacy is
demonstrated in our simulated platform. It is also gener-
ally applicable on various robot systems, such as our pipe
robot prototype FAMPER [2], which is equipped with a
range sensor that provides 2.5-D range image with depth

LI et al.: ON OPTIMIZING AUTONOMOUS PIPELINE INSPECTION 225

TABLE I
UPPER BOUNDS FOR THE GALLERY GUARDING PROBLEM

information. Furthermore, combined with 2-D image re-
construction techniques, our algorithm can work well for
robots that are equipped with a conventional 2-D camera.

II. BACKGROUND AND RELATED WORK

A. Gallery Guarding

On a geometric region M , we want to find the optimal guard-
ing, which uses the smallest number of points {gi} inside M so
that any boundary point p ∈ ∂M is visible to at least one guard.
Here, M is a 3-D shape whose boundary ∂M is represented by
a polygonal mesh. For a given guard gi , any point p ∈ ∂M is
visible to gi if the line segment gip is entirely located inside
M (we consider ∂M ⊂ M). Various versions of this problem
are generally called art-gallery problems, which are known to
be a famous problem with high complexity. Even in the 2-D
case, the problem is known to be NP-complete. “Very little is
known about gallery guarding in three dimensions” [3]. To our
best knowledge, no effective approximation algorithm has been
proposed for 3-D regions that are bounded by general poly-
gons, and this is the first practical algorithm that works for large
free-form 3-D domains (such as complicated pipeline systems)
represented by polygonal meshes.

The art-gallery problem was first proposed by Klee. Guards
can be restricted to boundary vertices (p ∈ ∂M), interior ver-
tices (p ∈ M), or mobile vertices. When guards are not mobile,
they are called stationary guards. If guards are restricted to the
boundary, they are called vertex guards; if there is no bound-
ary restriction, the guards are referred as point guards. In 2-D,
Chavatal [4] and Fisk [13] both showed that a simple poly-
gon M ⊂ R

2 needs at most �n/3� stationary guards, based on
which, Avis and Toussaint [14] developed an O(n log n) time
algorithm to position �n/3� guards in M . When guards are mo-
bile, we call them mobile guards. Furthermore, mobile guards
are called edge guards if they are restricted to boundary vertices.
O’Rourke [5] showed that �n/4� mobile guards are sufficient
for a simple polygon M ⊂ R

2 . More results are recapped in
Table I.

The aforementioned theoretic work discusses the conserva-
tive upper bounds for necessary guards on various regions. Given
a specific region, we are interested in designing practical algo-
rithm to find its optimal point guards, which depends on topol-
ogy and geometry of this region. An effective algorithm to com-
pute the optimal guarding of a given region will benefit many
geometric computing tasks. However, computation of optimal
guarding is highly challenging. Finding minimal guards has
been shown to be NP-hard for 2-D polygons with holes [15],

2-D simple polygons [16], and even 2-D simple orthogonal
polygons [17], [18], using either vertex or point guards. Ap-
proximation algorithms have been studied in 2-D to get a close-
to-optimal result in polynomial time complexity. Ben-Moshe et
al. [3] cover 1.5-D terrain using point guards in O(n2) time, with
the optimal factor O(1). Efrat and Har-Peled [19] find vertex
guards for 2-D simple polygonal regions and h-hole polygo-
nal regions in O(nc2

opt log4 n) and O(nc2
opt log4 n) expected

time, with expected O(log copt) and O(nhc3
opt log4 n) optimal

factors, respectively. Lien [20] computes guarding for 3-D point
cloud data, approximating visibility using ε-view. The algorithm
is based on a randomized greedy approach.

B. Pipeline Inspection Robots

According to the degree of autonomy, pipeline inspection
robots can be classified as follows [21].

1) No Autonomy: Robots are fully teleoperated by humans
via a tether cable. While the robot is traveling through
the pipe, the pipeline condition data are collected and sent
back by the robot, and then assessed by human operators.

2) Semiautonomy: Robots are partially controlled by auto-
matic control programs [22].

3) Full Autonomy: Robots are fully controlled by programs,
and perform an automatic pipeline condition assessment.
However, lacking effective technologies in efficient analy-
sis of environment hinders the automatic assessment [21].

1) Manual and Semiautonomous Methods: There are many
application inspection technologies, such as closed-circuit
television (CCTV), laser surveys, sonar surveys [23], redio-
frequency identification [24], and mobile sensor [25]. The in-
troduction of CCTV inspection methods in the 1960s provided
an inexpensive and safe option, and they, thus, have been the
most popular and widely used approaches across the industry for
many years. The CCTV provides rich videos/images informa-
tion, which is collected by robots for subsequent pipeline con-
dition assessment. Various CCTV methods have similar prin-
ciples. The robot is mounted by a remotely controlled tractor,
carries a television camera, and illuminates the interior of the
pipe. The inspector has to identify and categorize defects by the
image displayed on the monitor. When a defect is noticed, the
inspector stops the robot and assesses the condition.

Advances in optical survey techniques have been utilized in
the sewer scanner and evaluation technology (SSET) such as
in [26]. Unlike the CCTV inspection system, the SSET may not
need to stop for a zooming-in defect inspection. For instance,
recent work in [27] has advanced the use of automated defect
detection systems for pipelines.

Laser-based systems and ultrasonic-based systems are also
used in pipeline inspection (see the survey in [28]). Laser-based
systems are generally implemented in two ways: the whole cir-
cle image method and the single spot scanning method [29].
The first method projects a full ring of light onto the wall in
one go, while the single spot scanning method sends point-by-
point beams in sequential. These two methods indicate a tradeoff
between accuracy and inspection time. The whole-ring image
method allows faster data acquisition but has been found less ac-

226 IEEE TRANSACTIONS ON ROBOTICS, VOL. 28, NO. 1, FEBRUARY 2012

curate [30]. Ultrasonic-based systems use high-frequency sound
waves to detect pipe properties such as thickness, shape, and
presence/sizes of defects [31]. Laser-based and ultrasonic-based
methods can be combined to obtain higher quality data [32].

2) Autonomous Methods: A few full-autonomous robots
have been developed for pipeline inspection. The Kurt [33] can
run in dry clean pipelines guided by maps uploaded into the
robot. The Marko [34] is designed for autonomous navigation
in clean pipelines with diameter ranges from 300 to 600 mm.
The Kantaro [21] is used to navigate in pipelines with diameter
ranges from 200 to 300 mm, but only the horizontal mobility is
considered. To design autonomous pipeline inspection robots,
the main challenges include their moving ability, energy, and
pipe condition assessment [35].

In this paper, we use laser range finders to detect the depth
(height) information toward sets of sample directions. The cap-
tured 3-D range images provide easy measurement of the envi-
ronment. We focus on designing the algorithm and architecture
of the effective autonomous inspection system. The guarding
and subsequent inspection can easily extend to various systems
that are based on different data acquisition schemes.

III. 3-D GALLERY GUARDING

The geometric abnormalities of the pipeline can be detected
from the robot if the robot can see this region and measure the
distance from itself to the pipe. Suppose the robot always checks
at a set of same spots, and it has premeasured (template) distance
information on each spot toward different directions, then it
can tell whether the current pipeline is normal, i.e., preserving
the same shape. These checking spots need to be intelligently
selected so that fewest comparisons are necessary. Meanwhile,
to guarantee that the entire pipeline is visually covered, we
require that these points together can guard the entire region.

Given a point p inside the region M , suppose we repre-
sent the boundary surface of M using a triangle mesh ∂M =
{T, V }, where V = {v1 , v2 , . . . , vNV

} is the vertex set, and
T = {t1 , t2 , . . . , tNT

} is the set of triangles connecting them.
We say that p is visible to a point q on ∂M (q is not necessary a
vertex; it can be a point on a triangle from T), if the line segment
pq connecting p and q is totally inside M , namely, pq intersects
∂M only on q. We call the set of all visible points on the bound-
ary {q}, q ∈ ∂M the visible region S(p) of p. Then, we say
that a set of points {p} can visibly guard the entire region, if
the union of their visible regions is the entire ∂M . Finding a
smallest guarding set {p} that can cover the entire region is the
optimal guarding problem that we want to solve. Our algorithm
is based on the following intuitions.

1) As demonstrated in several medical visualization and vir-
tual navigation applications (e.g., [36] and [37]), medial
axes (curve skeletons) usually have desirable visibility to
boundary points (referred as the “reliability” of skeletons).
An effective skeleton can guide the camera navigation, en-
suring nice examination (visibly covered) of the interior
of organ surfaces.

2) Hierarchical skeletons or skeletons for a progressively
simplified mesh can be effectively computed and used

to reduce the size of the optimization problem, leading to
a computation of better numerical efficiency and stability
against boundary perturbations.

Many effective skeletonization algorithms (see a survey by
Cornea et al. [38]) have been developed for 3-D shapes. We use
the algorithm in [39] since it efficiently generates skeletons on
medial-axis surfaces of the 3-D shapes. Suppose the boundary
surface ∂M of a volumetric region M is represented by a triangle
mesh (also denoted as ∂M) with n vertices, and the output
skeleton has k nodes; the guarding problem is then converted to
finding a minimal-size point set G from this k points, such that
all n boundary vertices are visible to G.

A. Visibility Detection

A basic operation is to detect the visible region S(p) of a
given point p. Following the definition, for a point q ∈ ∂M , to
check its visibility to a point p ∈ M , one should check intersec-
tion between the line segment pq and ∂M . If the intersection
is detected on a point q′ ∈ ∂M other than q and the Euclidean
distance |pq′| < |pq|, then q is not visible from p. The inter-
section between the line segment pq and ∂M can be detected
by checking the intersection between pq and each triangle face
ti ∈ T ⊂ ∂M .

We need to compute the visibility of p against all the vertices
of the mesh of ∂M . Simply enumerating every pvi to check
its intersections with every triangle t ∈ T is time consuming:
For a single interior point p, it takes O(NV · NT) = O(N 2

V)
time to check its visibility on all boundary vertices. We de-
velop the following sweep algorithm to improve the efficiency
to O(NT log NT), i.e., O(NV log NV).

We create a spherical coordinate system which is origi-
nated at p. Each vertex vi ∈ V is represented as pvi = (r(vi),
θ(vi), ϕ(vi)), where r(vi) ≥ 0,−π < θ(vi) ≤ π, −π

2 ≤ ϕ(vi)
≤ π

2 . For every triangle ti = (vi,1 , vi,2 , vi,3) ∈ T, 1 ≤ i ≤ nT ,
its max θ(ti) can be defined as θmax(ti) = max{θ(vi,j)}, 1 ≤
j ≤ 3; θmin(ti), ϕmax(ti), and ϕmin(ti) can be defined
similarly.

The segment pvk cannot intersect with a triangle t unless they
are adjacent:

{
θmin(t) ≤ θ(vk) ≤ θmax(t)
ϕmin(t) ≤ ϕ(vk) ≤ ϕmax(t).

(1)

The angle functions θ and ϕ are not continuously defined on a
sphere. When a triangle t spans θ = π, we duplicate it to ensure
that each θ of the original t is between [θmin(t) − 2π, θmin(t))
and θ of its duplicate is between [θmax(t), θmax(t) + 2π), by
adding or subtracting θ by 2π. For each triangle t that spans
ϕ = π, we detect and duplicate it in the same way. Using θ(vi)
as the primary key and ϕ(vi) as the secondary key, we then sort
all line segments pvi . Then, we sweep all segments following
the angle functions one by one, filtering out triangles not sat-
isfying condition (1). Specifically, we define a counter ci on
every triangle ti . Initially, ci = 0; when the segment pv, v ∈ ti ,
is being processed, ci ← ci + 1. The following two cases
indicate that the sweep has not reached the neighborhood of the
triangle ti , and we do not need to check its intersection with line

LI et al.: ON OPTIMIZING AUTONOMOUS PIPELINE INSPECTION 227

segment pv

ci = 0 →θmin(ti), θ(ov), or ϕmin(ti) > ϕ(ov)

ci > 3 →θmax(ti) < θ(ov), or ϕmax(ti) < ϕ(ov). (2)

Therefore, we maintain a list L of neighboring triangles {ti}
whose counters have 1 ≤ ci ≤ 3. When the sweep segment hits
a new triangle tj , we have cj = 1 and add tj into L; when a
counter cj = 3, after processing the current segment we remove
tj from L.

Given a skeleton point p, for a boundary triangle mesh with
NV vertices, it takes O(NT log NT) to compute and sort all tri-
angles following their segment angles. When we are sweeping
a segment pvi , if the size of the active triangle list L is m, it
takes O(m) intersection-detecting operations. Therefore, the to-
tal complexity is O(NT log NT + NV · m). The incident trian-
gle around a vertex vi is generally very small (i.e., m < log NT).
Therefore, the algorithm finishes visibility detection of p in
O(NT log NT) time. On a skeleton containing k nodes, it takes
O(kNT log NT) precomputation time to compute the visible
region for all nodes.

B. Greedy and Optimal Guarding

Once visibility information for all skeletal nodes is com-
puted, we want to pick a minimum sized point set that can
cover all boundary vertices. It can now be converted to a set-
covering problem, which is also NP-complete [40]: Given the
universe point set V = {vi}, i = 1, . . . , NV , and a family S
of subsets Sj = {sj,k}, sj,k ∈ V, j = 1, . . . , NS , a cover is a
subfamily C ⊂ S of sets whose union is V . We want to find
a cover C that uses the fewest subsets in S. Here, V corre-
sponds to the set of all vertices of ∂M ; for each skeletal node
pj , j = 1, . . . , NS , Sj contains all boundary vertices visible to
pj . Each C indicates a subset of skeletal nodes that can guard
the entire region. Skeletons generated using medial-axis-based
methods with dense enough nodes usually ensure that S itself
is a covering. This holds in all of our experiments. However,
if a coarsely sampled skeleton cannot cover the entire V , we
can easily include all those invisible vertices, i.e., their visible
regions, into S.

A greedy strategy for the set covering is to iteratively pick the
skeletal nodes p that can cover the largest number of unguarded
vertices in V , then remove all guarded vertices v ∈ S(p) from
V , meanwhile, and update S accordingly since the universe
becomes smaller, until V = ∅. The greedy strategy is effective,
and it yields O(log n) approximation [41] to the set-covering
problem.

An optimal selection can be computed by 0–1 programming,
also called integer linear programming (ILP). For every skeleton
point pi, i = 1, . . . , NS , we assign a variable xi such that

xi =
{

1, if pi is chosen
0, otherwise.

The objective function to minimize is then
∑NS

i=1 xi , as we want
to pick the fewest necessary points. Since ∀v ∈ V should be
covered, for each such vi , at least one of its visible skeletal
nodes Pi = {pj |vi ∈ S(pj)} should be picked. Therefore, we

minimize
∑NS

i=1 xi , subject to

xi = {0, 1}, and
∑

pj ∈Pi

xj ≥ 1 ∀vi ∈ V.

This objective function can be minimized using branch-and-
bound algorithms. When the dimension is small (e.g., a few
hundreds to a few thousands), we can use the TomLab opti-
mization package [42] to solve it efficiently.

C. Hierarchical Guarding

Computing the optimal guarding based on ILP is highly time
consuming and it limits the size of problems that we can han-
dle: General 3-D volumetric shapes can easily have a number
of vertices (20 000–200 000) on its boundary surface, which is
too large for this optimization. On the other hand, the greedy
algorithm generates the guards in a locally optimal manner.
Furthermore, the greedy strategy is not robust against local ge-
ometric perturbations. For example, a small bump could lead to
global structural variance of the guarding points. We propose
a hierarchical guarding computation framework which is based
on the progressive mesh [43], combining the 0–1 programming
optimization and the adaptive greedy refinement.

We simplify the boundary mesh ∂M into several resolutions
∂Mi = {V i, F i}, i = 0, . . . ,m, using a progressive mesh [43].
In the coarsest level i = m, ILP optimization is performed on
all elements v ∈ ∂Mm , and we get the coarsest level guard set
Gi = {gi

k}. Then, we progress to i = m − 1 level ∂Mm−1 =
(V m−1 , Fm−1).

1) Map existing guards Gi+1 = {gk} to closest finer level
skeletal nodes Gi = {g′k} to locally adjust them to maxi-
mize their visible region S(g′k).

2) Remove least significant guards {g||S(g)| < εNV } from
Gi .

3) Remove covered vertices {v|v ∈ S(g), g ∈ Gi}.
Then, we solve ILP again on uncovered boundary vertices.

With details increase in finer levels, new guards will be inserted
into Gi . Before applying the ILP optimization, we further con-
duct four reduction (see in the following) operations on un-
covered regions to reduce the dimensions of the optimization.
This progressive refinement ends when all boundary vertices are
covered on the finest level i = 0.

Reduction: The dimension of the ILP optimization on each
level can be reduced using the following reduction rules, without
changing the size of the optimal solution. Suppose we store the
visibility information in an incidence matrix A. If the skeletal
node pi can see the vertex vj , then we let aij = 1, otherwise
(π cannot see vj), let aij = 0. Originally the dimension of A is
NS × NV . The following four rules are applied to reduce it.

1) If column j has only one nonzero element at row i, we
must take pi in order to see vj . Therefore, add pi into G,
and remove column j. In addition, for all nonzero element
aik , remove column k (we take pi : all points that it sees are
guaranteed to be covered, and, thus, now can be removed).

2) If row i1 has all its nonzero elements nonzero in row i2 ,
i.e., ai1 ,j = 1 → ai2 ,j = 1, then pi2 sees all vertices that
pi1 can see, and we can remove the entire row i1 .

228 IEEE TRANSACTIONS ON ROBOTICS, VOL. 28, NO. 1, FEBRUARY 2012

Fig. 3. Guarding statues using HILP. From left to right: Guarding on a few
sculpture datasets. (a) Michelangelo’s David. (b) Greek. (c) Cyberware Male. (d)
Female. Small nodes are the guards, where green nodes are the latest computed
guards on the finest level.

3) If column j1 has all its nonzero elements nonzero in col-
umn j2 , i.e., ai,j1 = 1 → ai,j2 = 1, then guarding vj1

guarantees the guarding of vj2 , and we can remove the
entire column j2 .

4) If the matrix A is composed of several blocks, we partition
A to several small matrixes {Ak}.

In step 4, after removing vertices that have been seen by
the adjusted guards from a coarser level, remaining boundary
vertices could be partitioned to several connected components
far away from each other, which can be optimized separately
and more efficiently.

In our experiments, we simplify the boundary mesh to the
coarsest level with 5000 vertices for the first round ILP opti-
mization. Generally, we make each iteration to add in another
10 000 vertices. When the size of constraints is around 5000,
and the size of variables (skeletal nodes) is around 1000, the
optimization usually takes 10–50 s to solve.

Our hierarchical scheme together with the reduction process-
ing has the following important advantages over both the pure
greedy strategy and the pure 0–1 optimization.

1) It is much faster than the nonlinear ILP optimization.
The current framework can handle large-size geometric
shapes.

2) With similar performance, it usually provides better
guarding solutions than a pure greedy strategy.

3) It is hierarchical and, therefore, is robust and stable against
geometric noise. In our HILP framework, refined local
details tend to not change the global structure of the pre-
viously optimized guarding graph in coarser levels.

Fig. 3 shows some examples of HILP guarding on sculpture
data, and Table II shows the runtime statistics. We use these
irregular sculpture data to demonstrate the significant efficacy
of our algorithm since our prototype pipelines on hand are rela-
tively simple. To thoroughly cover and inspect complex pipeline
system such as in Fig. 2, using HILP we can find its guarding
point set efficiently.

IV. AUTONOMOUS PIPELINE INSPECTION

Our guarding algorithm computes the set of necessary check-
ing spots for thorough inspection. The inspection robot only

TABLE II
GUARDING STATISTICS TABLE

Fig. 4. Prototype robot FAMPER. (a) and (b) Robot and its design. (c) and
(d) Robot inspecting a pipe.

Fig. 5. Simulation environment. The 3-D model of the FAMPHER robot in
the pipeline; red points denote guarding points.

needs to go to each guarding point, construct the current height
maps (see Section IV-A), and compare them with the precalcu-
lated templates for abnormal identifications. When geometric
changes are detected, the system refines the identification of the
abnormal areas (see Section IV-B), and extract the boundary of
the damaged region (see Section IV-C).

A. Height Maps Acquisition

The geometry of the pipeline environment is measured using
laser range finders in our system. The distance from the robot
to a point on the wall is captured and stored. A range image
stores a set of depth information in a rectangle viewport along
a direction, and we call it a height map.

LI et al.: ON OPTIMIZING AUTONOMOUS PIPELINE INSPECTION 229

Fig. 6. (a) Shot of the laser scanning. The sample grid density is decided by
the sample rate and the scan range of the laser scanner. Every sample point
has a planar coordinate (u, v) corresponding to the actual intersection point
in 3-D space. The laser scanner rotates to a direction and does a snapshot to
project the surface to a planar with a range of 2 tan α. The red point indicates
the intersection result of p in the 3-D region, and the corresponding height data
h(p) are stored for detection. Scanning at every sample point, the height map
is constructed. (b) Motion plan of the scanner. The scanner rotates to cover the
whole spherical area. The red arrowheads are the rotated direction of φ, and the
green is one step of rotation increment of θ.

The abnormal detection is based on the comparison between
precalculated height map templates and the current height maps.
We compare height maps on each inspection point. Suppose the
laser scanning has two parameters: the scan range angle α and
the sampling rate s. α decides the field of view of the scanner,
and s indicates the sampling resolution inside the field of view.
As Fig. 6(a) shows, given a shooting direction, the scanner takes
a snapshot of the environment, which produces a height map on
a planar square region R, uniformly sampled with s × s points
P . Since one snapshot can only cover an area within the current
view angle, a planed motion sequence is necessary for the laser
scanner to rotate and take pictures to cover the entire 360◦. The
laser scanner with the scan range α and the sample rate s is
placed at a guarding position o, which points toward an initial
direction L; the height map acquisition processes can be simply
conducted as follows.

1) Using the local spherical coordinate system which is de-
fined at o, given a direction L(r, φ, θ), L takes a snapshot
and gets a depth image P (α, s) [see Fig. 6(a)]. A depth is
defined on every point on the image p ∈ P , whose 2-D co-
ordinate can be defined as (u, v), 0 ≤ u ≤ 1, 0 ≤ v ≤ 1.

2) 3-D position of each boundary point v can be derived from
the depth on its projection p(u, v). The transformation can
be represented by a rotation matrix.

3) After taking one depth image, the laser scanner rotates
for another height map. The motion plan of the scanner
follows the rotation sequences: First fix φ, rotate θ for
N times, increase π/α iteratively, and then increase φ
to perform the θ rotation again until the whole spherical
region is covered. The rotation path is shown in Fig. 6(b).

4) Finally, we get the set of height maps {HL} collected in
the aforementioned steps and save them together with the
starting projection direction on every guarding point.

In practice, during height map acquisition, the geometry of
regions far away from a guard can be visible but captured less
accurately because of the precision of the range finder or the

Fig. 7. Height maps comparison. (a) Template height map. (b) Height map of
an abnormal region. The missing region indicates a hole.

sampling resolution. To tackle this issue, before guarding com-
putation, we add a simple parameter dp for each skeleton node
p: If a boundary point q ∈ ∂M is visible to p but far away, i.e.,
distance |pq| > dp , we consider q to be invisible. In other words,
a guard only sees points in a bounded distance. The whole op-
timization algorithm can be applied exactly in the same way.
In long and thin environments, more guards may be necessary,
but each guarding region will have less long antenna, and the
inspection accuracy will be improved. A heuristic setting for dp

can be dp = α · d0
p , where α is a constant parameter, and d0

p is
the distance from p to its nearest visible boundary point.

B. Abnormal Boundary Detection

After all height maps are obtained, on every guarding point,
we compare the precollected template height maps {HL} [see
Fig. 7(a)] and the current height maps {H ′

L} [see Fig. 7(b)].
If the height information changes |h(u, v) − h′(u, v)| > ε, we
consider the region around (u, v) as a defective region, and
report (u, v) as a abnormal point. ε is a similarity threshold.
In practice, the acquired depth data could have geometric and
topological noise. By adjusting ε, the system can tolerate small
deviations because of certain acquisition noise. On the other
hand, a local efficient data preprocessing step in topological
denoise or geometric completion/fairing [44], [45] could also
be helpful in cleaning environment noise.

Compared with reporting simply a set of sampled abnormal
points, an accurate estimation of the bad region’s shape is de-
sirable. When a defective region is detected, in order to “zoom
in” to see the shape of the defective region, we need to examine
more sampling points by performing denser scanning around
this region. During the initial scanning of the original pipeline,
we may not do very dense sampling; therefore, with the same
number of depth acquisition, we can capture a larger region
in every shot for better efficiency. Regions among sampling
points are approximated using bilinear interpolation h(E)
≈ h(u1 ,v1)

(u2 −u1)(v2 −v1) (u2 − u)(v2 − v) + h(u2 ,v1)
(u2 −u1)(v2 −v1) (u − u1)

(v2 − v) + h(u1 ,v2)
(u2 −u1)(v2 −v1) (u2 − u)(v − v1) + h(u2 ,v2)

(u2 −u1)(v2 −v1)
(u − u1)(v − v1).

To report a refined boundary shape of an abnormal region,
we use a quadtree [46] subdivision scheme: Near such a re-
gion, boundary cells split accordingly to get the refined geom-
etry. For each new point (u′, v′), we detect its height h′(u′, v′)
and compare it with the interpolated height on the template

230 IEEE TRANSACTIONS ON ROBOTICS, VOL. 28, NO. 1, FEBRUARY 2012

Fig. 8. Quadtree splitting and boundary extraction. (a) Polygon colored in
blue indicates a defective region on the pipe wall. The green nodes are normal
points, and the black ones indicate the abnormal height data; the boundary
extracted from the quadtree without quadtree splitting, colored in red, is coarse.
(b) Quadtree cells split. (c) Extracted boundary (red curves) after quadtree
refinement.

height map h(u′, v′). Fig. 7 shows an example. The max level
of the subdivision is determined by the resolution of the laser
range finder. The boundary of holes, clogs, and deformations can
be detected/refined using this paradigm, since these geometric
changes always lead to changed height maps.

C. Boundary Extraction

When the refinement is done, the boundary of the abnormal
region can be extracted and reported. We conservatively link
the normal points on boundary cell up to form the boundary:
Starting from a normal point on a boundary cell, linking the
normal points in the cell along the edge, getting a neighboring
boundary cell, and repeating this process until all boundary cells
are traversed.

Fig. 8 illustrates the process of quadtree splitting and extrac-
tion. In a snapshot, the grids are the cells, and the green polygon
indicates a hole on the pipeline wall. Normal points are colored
in green, while abnormal points are colored in black. In the
coarsest resolution, we get the red boundary shown in (a). We
can get finer boundary shape (b), and the extracted boundary is
depicted in red in (c).

V. RESULTS OF SIMULATED EXPERIMENTS

Our guarding-driven pipe inspection system can be imple-
mented on the prototype pipeline robot [2], which can be used
for the inspection of pipelines. This robot consists of four wall-
press caterpillars that are operated by two dc motors each to pro-
vide steering capability to go through 45◦ elbows, 90◦ elbows,
T-branches, and Y-branches, and make a superior performance
in all types of complex networks of pipelines (see Fig. 4). The
robot is also equipped with a powerful computing system that
makes it extendable to various sensing and actuating devices,
such as in our experimental system, for localization and laser
scanning. The height information can be obtained using a mul-
tislit laser range scanner [47], which has the size of about 110 m
× 90 mm and includes a laser projector and a charge-coupled
device (CCD) camera (the laser projector in [47] is StockerYale
Mini-715L, which projects 15 slits, with an adjacent slit an-
gle 2.3◦; the CCD camera is Point Grey Research Flea2, which
measures 330 points). The height information can also be ob-

tained by laser scanners in [21] and [34] or other range cameras
(e.g., [48] and [49]).

The rotation of the sensor can be controlled by a small me-
chanical platform installed in the rear part of the robot; therefore,
the scan can be conducted radially inside the pipe toward differ-
ent directions. Several effective sensing platforms with similar
mechanism have been developed [21].

We develop a simulated platform for testing our algorithm
(see Fig. 5), which simulates the process of inspection. We
apply our procedure on this platform using several complicated
3-D virtual pipelines. The simulated results are convincing, and
shows the effective inspection on pipeline geometry.

A. Hole Detection

If a hole appears on the pipeline, it can be identified online
when the robot reaches the guarding point that covers this re-
gion, and matches the captured range depth images with the
stored templates. We simulate this on pipeline meshes M by
randomly generating some missing regions. An experiment is
shown in Fig. 9. A pipeline model and the necessary guards
are shown in (a), where regions covered by each guard are
rendered in a specific color for the visualization purpose. Any
given region of the pipeline is covered by at least one guard and,
therefore, is colorized. The height maps can then be generated as
templates, measuring the “correct” distance from each guarding
site to the pipe wall toward specific directions. This simulates
range images obtained by a laser scanner. Now, we simulate the
appearance of defected regions on the pipeline by generating
some missing regions as shown in (b). When the robot checks
height maps on guarding points, these holes can be immediately
detected and illustrated in (c).

Another example is shown in Fig. 10; this pipe is guarded by
12 points (a). In addition, the damaged region of the pipe is big
and with complex topology (b). In this case, the robot should
check from more than one guarding points in order to detect
the entire shape of such a big hole. The entire defect geometry
is extracted by composing boundaries detected from different
guarding sites. The merged boundary loop is illustrated in (c).

B. Deformation Detection

Small deformation such as bending, erosion, etc., can also
be detected in our system as shown in Fig. 11. The detected
deformed region is colored in red.

C. Clogging Detection

Clogging also changes the scanned geometry of the pipeline
and can be detected. Fig. 12 shows an example. The clogged
solid (green) is detected, and its boundary geometry is recon-
structed using height maps as illustrated in dark red. The robot
will report the clogs when it is detected. In this example, the
reconstruction merges the geometry of the blocking stuff from
two aspects (from two guarding points) using their correspond-
ing height maps.

LI et al.: ON OPTIMIZING AUTONOMOUS PIPELINE INSPECTION 231

Fig. 9. Inspection process on a simulated pipeline. (a) (Upper) Simulated model. (Lower) Regions guarded by different guard points encoded in different colors.
(b) Damaged pipe with some holes. (c) Damages are detected, whose boundaries are extracted and shown in green.

Fig. 10. Guarding and inspection process on a more complicated pipeline. (a) (Upper) Simulated model. (Lower) Guarding points and guarded regions rendered
in different colors, respectively. (b) Damaged pipe with big and concave holes. (c) Large holes are detected/extracted from more than one guarding points; the
whole big boundary is composed of several extracted subboundaries and identified separately from different guarding points, as shown in green.

Fig. 11. Inspection process on a deformed pipeline. (a) (Upper) Simulated model. (Lower) Regions guarded by different guard points encoded in different colors.
(b) Deformed pipe. (c) Deformations are detected, whose regions are extracted (and refined) and shown in red.

Fig. 12. (Left) Pipeline blocked by a solid (in green). (Middle) Clog detection
on the pipeline. Height maps constructed and merged by detected views from
different guarding points. Green regions indicate normal status, while the red
regions indicate the abnormal height information corresponding to the clog
geometry. (Right) Inspection result, which is the reconstructed surface colored
in dark red, describes the location and geometry of the blocking region.

VI. CONCLUSION

We have proposed an efficient 3-D guarding algorithm that
can cover a given complicated environment using as few as pos-

sible points. Finding an efficient solution to the fundamental
problem of how to inspect on fewest points yet thoroughly cov-
ering the entire environment can greatly benefit the autonomous
design of inspection and exploration robots.

We have developed a simulation system of pipeline inspec-
tion, and conducted experiments to evaluate the efficacy of
our system. With our optimal guarding, abnormal geometric
changes of the pipeline such as holes, clogs, and deformation
can be thoroughly detected online.

The remaining challenging issue for the current system is
the dynamic environment mapping. The initial geometry of the
pipeline system needs to be scanned to a digital model before
the region-guarding computation. In addition, after the guarding
spots are computed, the pipeline wall needs to be marked so that
the robot can localize itself to know whether it is on the spot. The
development of a system that a robot without this prior knowl-
edge can do simultaneous 3-D mapping (i.e., reconstructing

232 IEEE TRANSACTIONS ON ROBOTICS, VOL. 28, NO. 1, FEBRUARY 2012

the map of the environment) and localization will be highly de-
sirable. In the near future, we will study these localization and
dynamic environment mapping problems by exploring effective
partial matching of range images.

ACKNOWLEDGMENT

This paper highlights the autonomous robotic systems’ dy-
namical problems associated with technology and engineering
sciences. A connecting link between these two is that computer
science plays an important role in both fields. This concept is
inspired by Prof. Hopcroft’s paper titled “the impact of robotics
on computer science” [50] published in the 1990s.

REFERENCES

[1] Hogeschoolzeeland. (2007). Pipes, tubes, machinery and steam turbine at
a power plant [Online]. Available http://goo.gl/fRp3c

[2] J.-H. Kim, G. Sharma, and S. Iyengar, “FAMPER: A fully autonomous
mobile robot for pipeline exploration,” in Proc. IEEE Int. Conf. Ind.
Technol., 2010, pp. 517–523.

[3] B. Ben-Moshe, M. J. Katz, and J. S. Mitchell, “A constant-factor ap-
proximation algorithm for optimal terrain guarding,” in Proc. ACM/SIAM
Symp. Discr. Algorithms, 2005, pp. 515–524.

[4] V. Chvatal, “A combinatorial theorem in plane geometry,” J. Combinato-
rial Theory, vol. 18, pp. 39–41, 1975.

[5] J. O. Rourke, “Galleries need fewer mobile guards: A variation on
Chvatal’s theorem,” Geometriae Dedicata, vol. 14, pp. 273–283, 1983.

[6] J. Urrutia, “Art gallery and illumination problems,” in Handbook of Com-
putational Geometry, Amsterdam, The Netherlands: North-Holland, 2000,
pp. 973–1027.

[7] J. Kahn, M. Klawe, and D. Kleitman, “Traditional galleries require fewer
watchmen,” SIAM J. Algebr. Discrete Methods, vol. 4, no. 2, pp. 194–206,
1983.

[8] J. O. Rourke, “An alternate proof of the rectilinear art gallery theorem,”
J. Geometry, vol. 21, pp. 118–130, 1983.

[9] J. O’Rourke, Art Gallery Theorems and Algorithms. London, U.K.: Oxford
Univ. Press, 1987.

[10] F. Hoffmann, M. Kaufmann, and K. Kriegel, “The art gallery theorem for
polygons with holes,” in Proc. 32nd Annu. Symp. Found. Comput. Sci.
IEEE Comput. Soc., 1991, pp. 39–48.

[11] I. Bjorling-Sachs and D. Souvaine, “An efficient algorithm for guard
placement in polygons with holes,” Discr. Comput. Geom., vol. 13, pp. 77–
109, 1995.

[12] E. Gyori, F. Hoffmann, K. Kriegel, and T. Shermer, “Generalized guarding
and partitioning for rectilinear polygons,” Comput. Geom., vol. 6, no. 1,
pp. 21–44, 1996.

[13] S. Fisk, “A short proof of Chvatal’s watchman theorem,” J. Combinatorial
Theory, Series B, vol. 24, no. 3, p. 374, 1978.

[14] D. Avis and G. Toussaint, “An efficient algorithm for decomposing a
polygon into star-shaped polygons,” Pattern Recognit., vol. 13, pp. 395–
398, 1981.

[15] J. O’Rourke and K. Supowit, “Some NP-hard polygon decomposition
problems,” vol. 29, pp. 181–190, 1983.

[16] D. T. Lee and A. K. Lin, “Computational complexity of art gallery prob-
lems,” IEEE Trans. Inf. Theory, vol. 32, no. 2, pp. 276–282, Mar. 1986.

[17] D. Schuchardt and H.-D. Hecker, “Two np-hard art-gallery problems for
ortho-polygons,” Math. Logic. Quart., vol. 41, pp. 261–267, 1995.

[18] M. J. Katz and G. S. Roisman, “On guarding the vertices of rectilinear
domains,” Comput. Geom.: Theory Appl., vol. 39, no. 3, pp. 219–228,
2008.

[19] A. Efrat and S. Har-Peled, “Guarding galleries and terrains,” Inf. Process.
Lett., vol. 100, no. 6, pp. 238–245, 2006.

[20] J.-M. Lien, “Approximate star-shaped decomposition of point set data,”
presented at the Eurograph. Symp. Point Based Graph., Prague, Czech
Republic, 2007.

[21] A. Nassiraei, Y. Kawamura, A. Ahrary, Y. Mikuriya, and K. Ishii, “Concept
and design of a fully autonomous sewer pipe inspection mobile robot
“KANTARO,”” in Proc. IEEE Int. Conf. Robot. Autom., Apr. 10–14, 2007,
pp. 136–143.

[22] J. Y. Choi, H. Lim, and B.-J. Yi, “Semi-automatic pipeline inspection robot
systems,” in Proc. SICE-ICASE Int. Joint Conf., 2006, pp. 2266–2269.

[23] S. Costello, D. Chapman, C. Rogers, and N. Metje, “Underground asset
location and condition assessment technologies,” Tunnelling Underground
Space Technol., vol. 22, nos. 5–6, pp. 524–542, 2007.

[24] J.-H. Kim, G. Sharma, N. Boudriga, and S. Iyengar, “Ramp system for
proactive pipeline monitoring,” in Proc. Int. Conf. Commun. Syst. Netw.,
2010, pp. 1–2.

[25] J. Kim, G. Sharma, N. Boudriga, and S. Iyengar, “Spamms: A sensor-based
pipeline autonomous monitoring and maintenance system,” in Proc. Int.
Conf. Commun. Syst. Netw., 2010, pp. 1–10.

[26] R. Wirahadikusumah, D. M. Abraham, T. Iseley, and R. K. Prasanth,
“Assessment technologies for sewer system rehabilitation,” Autom. Con-
struct., vol. 7, no. 4, pp. 259–270, 1998.

[27] D.-H. Koo and S. T. Ariaratnam, “Innovative method for assessment of
underground sewer pipe condition,” Autom. Construct., vol. 15, no. 4,
pp. 479–488, 2006.

[28] O. Duran, K. Althoefer, and L. Seneviratne, “State of the art in sensor
technologies for sewer inspection,” IEEE Sens. J, vol. 2, no. 2, pp. 73–81,
Apr. 2002.

[29] W. W. Zhang and B. H. Zhuang, “Non-contact laser inspection for the
inner wall surface of a pipe,” Meas. Sci. Technol., vol. 9, no. 9, p. 1380,
1998.

[30] J. Moraleda, A. Ollero, and M. Orte, “A robotic system for internal in-
spection of water pipelines,” IEEE Robot. Autom. Mag., vol. 6, no. 3,
pp. 30–41, Sep. 1999.

[31] M. Silk, “The determination of crack penetration using ultrasonic surface
waves,” NDT Int., vol. 9, no. 6, pp. 290–297, 1976.

[32] D. Levesque, M. Ochiai, A. Blouin, R. Talbot, A. Fukumoto, and J.-P. Mon-
chalin, “Laser-ultrasonic inspection of surface-breaking tight cracks in
metals using SAFT processing,” in Proc. IEEE Ultrason. Symp., Oct.
8–11, 2002, vol. 1, pp. 753–756.

[33] J. Hertzberg and F. Kirchner, “Landmark-based autonomous navigation
in sewerage pipes,” in Proc. 1st Euromicro Workshop Adv. Mobile Robot,
Oct. 1996, pp. 68–73.

[34] H. Streich and O. Adria, “Software approach for the autonomous inspec-
tion robot MAKRO,” in Proc. IEEE Int. Conf. Robot. Autom., Apr. 2004,
vol. 4, pp. 3411–3416.

[35] J. M. Mirats Tur and W. Garthwaite, “Robotic devices for water main
in-pipe inspection: A survey,” J. Field Robot., vol. 27, pp. 491–508,
Jul./Aug. 2010.

[36] T. He, L. Hong, D. Chen, and Z. Liang, “Reliable path for virtual en-
doscopy: Ensuring complete examination of human organs,” IEEE Trans.
Vis. Comput. Graphics, vol. 7, no. 4, pp. 333–342, Oct.–Dec. 2001.

[37] D.-G. Kang and J. B. Ra, “A new path planning algorithm for maximizing
visibility in computed tomography colonography,” IEEE Trans. Med.
Imag., vol. 24, no. 8, pp. 957–968, Aug. 2005.

[38] N. Cornea, D. Silver, and P. Min, “Curve-skeleton properties, applications,
and algorithms,” IEEE Trans. Vis. Comput. Graphics, vol. 13, no. 3,
pp. 530–548, May 2007.

[39] T. K. Dey and J. Sun, “Defining and computing curve-skeletons with
medial geodesic function,” in Proc. 4th Eurographics Symp. Geometry
Process., Eurographics Assoc. Aire-la-Ville, Switzerland, 2006, pp. 143–
152.

[40] J. Kahn, M. Klawe, and D. Kleitman, “Traditional galleries require fewer
watchmen,” SIAM J. Algebraic Discr. Methods, vol. 4, no. 2, pp. 194–206,
1983.

[41] D. S. Johnson, “Approximation algorithms for combinatorial problems,”
in Proc. 5th Annu. ACM Symp. Theory Comput., New York, 1973, pp. 38–
49.

[42] “TOMLAB v3.0 User’s Guide,” Dep. Math. Phys., Malardalen Univ.,
Västerås, Sweden, Tech. Rep. IMa-TOM-2001-01, 2001.

[43] H. Hoppe, “Progressive meshes,” in Proc. SIGGRAPH., New York, 1996,
pp. 99–108.

[44] H. Schoner, B. Moser, A. A. Dorrington, A. D. Payne, M. J. Cree, B. Heise,
and F. Bauer, “A clustering based denoising technique for range images of
time of flight cameras,” in Proc. Int. Conf. Comput. Intell. Model., Control
Autom., 2008, pp. 999–1004.

[45] X. Li, Z. Yin, L. Wei, S. Wan, W. Yu, and M. Li, “Symmetry and template
guided completion of damaged skulls,” Comput. Graph., vol. 35, pp. 885–
893, Aug. 2011.

[46] R. Finkel and J. Bentley, “Quad trees: A data structure for retrieval on
composite keys,” Acta Informatica, vol. 4, pp. 1–9, 1974.

[47] T. Kuroki, K. Terabayashi, and K. Umeda, “Construction of a compact
range image sensor using multi-slit laser projector and obstacle detection

LI et al.: ON OPTIMIZING AUTONOMOUS PIPELINE INSPECTION 233

of a humanoid with the sensor,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., Oct. 2010, pp. 5972–5977.

[48] J. Thielemann, G. Breivik, and A. Berge, “Pipeline landmark detection
for autonomous robot navigation using time-of-flight imagery,” in Proc.
IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Workshops, Jun.
23–28, 2008, pp. 1–7.

[49] J. Horn and J. Russ, “Localization of a mobile robot by matching 3d-laser-
range-images and predicted sensor images,” in Proc. Intell. Veh. Symp.,
Oct. 24–26, 1994, pp. 345–350.

[50] J. E. Hopcroft, “The impact of robotics on computer science,” Commun.
ACM, vol. 29, pp. 486–498, Jun. 1986.

Xin Li (M’09) received the B.S. degree from the Uni-
versity of Science and Technology of China, Hefei,
China, and the M.S. and Ph.D. degrees from Stony
Brook University, Stony Brook, NY, all in computer
science.

He is currently an Assistant Professor with the
Department of Electrical and Computer Engineering,
Center for Computational and Technology, Louisiana
State University, Baton Rouge. His research inter-
ests include geometric computing/modeling, com-
puter graphics, vision, and visualization.

Wuyi Yu (S’11) received the B.E. degree in electri-
cal engineering from Xiamen University, Xiamen,
China, where he is currently working toward the
Ph.D. degree with the Department of Automation.

He is currently a Visiting Student with the De-
partment of Electrical and Computer Engineering,
Louisiana State University, Baton Rouge. His re-
search interests include geometric modeling, com-
puter graphics, shape analysis and decomposition,
and volumetric mapping.

Xiao Lin received the B.E. degree in electrical en-
gineering from Xiamen University, Xiamen, China,
where she is currently working toward the Graduate’s
degree with the Department of Automation.

Her research interests include computer graphics,
shape deformation and editing, and surface mapping.

S. S. Iyengar (F’95) received the Ph.D. degree in
computer science from Mississippi State University.

He is a Ryder Professor of Computer Science
and the Director of the School of Computing Sci-
ence and Information computing with Florida Inter-
national University, Miami. His research interests in-
clude the design and analysis of high-performance
algorithms, image analysis for medical applications,
distributed sensor networks, parallel and distributed
computing, and computational aspects of robotics ap-
plications.

Prof. Iyengar is a Fellow of the Association for Computing Machinery and the
Advancing Science Serving Society and a member of the European Academy
of Sciences.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

